MouseJack
Injecting Keystrokes into Wireless Mice

Marc Newlin
Bastille Threat Research Team
Version 1.1

Abstract

MousedJack is a collection of security vulnerabilities affecting non-Bluetooth wireless mice and
keyboards. Spanning seven vendors, these vulnerabilities enable an attacker to type arbitrary
commands into a victim’s computer from up to 100 meters away using a $15 USB dongle.

Overview

Wireless mice and keyboards commonly communicate using proprietary protocols operating in
the 2.4GHz ISM band. In contrast to Bluetooth, there is no industry standard to follow, leaving
each vendor to implement their own security scheme.

Wireless mice and keyboards work by transmitting radio frequency packets to a USB dongle
plugged into a user’s computer. When a user presses a key on their keyboard or moves their
mouse, information describing the actions are sent wirelessly to the USB dongle.

The dongle listens for radio frequency packets sent by the mouse or keyboard, and notifies the
computer whenever the user moves their mouse or types on their keyboard.

. ((?))) Left Click Received

° & - (m)'

1. User clicks the left 2. Mouse transmits an 3. USB dongle receives the
mouse button unencrypted RF packet packet and tells the computer
that a left click cccurred

Unencrypted Mouse Packet

In order to prevent eavesdropping, most vendors encrypt the data being transmitted by wireless
keyboards. The dongle knows the encryption key being used by the keyboard, so it is able to

decrypt the data and see what key was pressed. Without knowing the encryption key, an
attacker is unable to decrypt the data, so they are unable to see what is being typed.

> @

1. User presses the ‘A’ key 2. Keyboard transmits an 3. USB dongle receives the
on their keyboard encrypted RF packet packet and tells the computer
that an ‘A’ keypress occurred

Encrypted Keyboard Packet

Conversely, none of the mice that were tested encrypt their wireless communications. This
means that there is no authentication mechanism, and the dongle is unable to distinguish
between packets transmitted by a mouse, and those transmitted by an attacker. As a result, an
attacker is able to pretend to be a mouse and transmit their own movement/click packets to a
dongle.

B o noe @(@%

1. Attacker generates a 2. Attacker’s USB dongle 3. Victim’s USB dongle receives
fake left click packet transmits an the packet and tells the computer
unencrypted RF packet that a left click occurred

Spoofed Unencrypted Keyboard Packet

Problems in the way the dongles process received packets make it possible for an attacker to
transmit specially crafted packets which generate keypresses instead of mouse
movement/clicks.

Common Transceivers
Nordic Semiconductor makes the popular nRF24L series of transceivers used in most of the

devices vulnerable to MouseJack. The nRF24L transceivers provide a mechanism to wirelessly
transmit data between two devices, but the functionality that turns mouse clicks and keypresses

into bytes sent over the air is implemented by each vendor. From a research standpoint, this
means that the same tools and procedures can be used to evaluate products from different
vendors.

Software Defined Radio Decoder

The nRF24L transceivers support multiple data rates, address lengths, packet formats, and
checksums. To accommodate this, the initial research was performed using a USRP B210
Software Defined Radio, coupled with a custom GNU Radio block designed to decode all of the
possible packet configurations. This proved fruitful, but there were drawbacks to using an SDR.

None of the tested devices employ frequency hopping in the traditional sense, but they all
change channels to avoid interference from other 2.4GHz devices (Bluetooth, Wi-Fi, etc). The
channel hopping is generally unpredictable, and Software Defined Radios are slower to retune
than the nRF24L radios. This makes it difficult for an SDR based decoder to observe all of the
transmitted packets.

When a mouse transmits a movement packet to a dongle, the dongle replies with an
acknowledgement packet telling the mouse that the movement packet was received. The
mouse waits for a short period before determining that the packet it transmitted was lost, which
can be as short as 250 microseconds. Due to USB latency and processing overhead, the
SDR-based decoder is unable to transmit ACKs within the narrow timeout window, so two way
communication between an SDR and dongle/mouse is not a viable option.

Enter the NES Controller

The SDR decoder made it possible to figure out the formats of the data being transmitted over
the air, but reliable two way communication would be necessary to start evaluating the devices
for potential weaknesses.

Parallel to the MouseJack research, an Arduino/nRF24L-based NES controller was being built
as part of a Burning Man project. The nRF24L was chosen because they are inexpensive and
easy to use, but the connection with the MouseJack project quickly became apparent and it was
decided to build an NES controller that could spoof wireless mice.

Mousejack

MousedJack NES Controller

The nRF24L chips do not officially support packet sniffing, but Travis Goodspeed
documented[1] a pseudo-promiscuous mode in 2011 which makes it possible to sniff a subset of
packets being transmitted by other devices. This enables the NES controller to passively identify
wireless mice and keyboards without the need for an SDR.

The NES controller proved to be an excellent platform for learning about the behavior of mouse
communication protocols. As opposed to passively collecting data, the NES controller translates
d-pad arrows into mouse movement packets, and A/B buttons into left and right clicks. In order
to achieve a smooth user experience, it was necessary to create a model of the packet timing
and specific behavior expected by the dongle.

The concept worked well, and the NES controller was presented at ToorCon in 2015[2], which
demonstrated the viability of controlling previously unseen wireless mice at will.

Despite being a marked improvement over the SDR decoder, the NES controller was not
without problems. Running off of battery power made it impractical to use amplified transceivers,
limiting the practical range to around 10 meters.

Crazyradio PA Dongles

The Crazyflie[3] is an open source drone which is controlled with an amplified nRF24L-based
USB dongle called the Crazyradio PA[4]. This is equivalent to an amplified version of the USB
dongles commonly used with wireless mice and keyboards. Modifying the Crazyradio PA
firmware to include support for pseudo-promiscuous mode made it possible to distill the packet
sniffing and injection functionality down to a minimal amount of Python code.

Crazyradio PA USB Dongle

Fuzzing

The Crazyradio PA dongles made it possible to implement an efficient and effective fuzzer.
Mouse and keyboard USB dongles communicate user actions to the operating system in the
form of USB HID packets, which can be sniffed by enabling the usbmon kernel module on
Linux.

The implemented fuzzer takes advantage of this by transmitting RF packets to a
mouse/keyboard dongle attached to the same computer, and monitoring USB traffic for
generated USB HID packets. Anytime mouse movement or keypresses are sent to the
operating system, the recently transmitted RF packets are recorded for analysis. Fuzzing
variants of observed packet formats and behaviors yielded the best results.

Vulnerabilities

Specifics of the discovered vulnerabilities vary from vendor to vendor, but they generally fall into
one of three categories:

1. Keystroke injection, spoofing a mouse

When processing received RF packets, some dongles do not verify that the type of packet
received matches the type of device that transmitted it. Under normal circumstances, a mouse
will only transmit movement/clicks to the dongle, and a keyboard will only transmit keypresses. If
the dongle does not verify that the packet type and transmitting device type match, it is possible
for an attacker to pretend to be a mouse, but transmit a keypress packet. The dongle does not
expect packets coming from a mouse to be encrypted, so it accepts the keypress packet,
allowing the attacker to type arbitrary commands on the victim’s computer.

2. Keystroke injection, spoofing a keyboard
Most of the tested keyboards encrypt data before transmitting it wirelessly to the dongle, but not

all of the dongles require that encryption is used. This makes it possible for an attacker to
pretend to be a keyboard, and transmit unencrypted keyboard packets to the dongle. This

bypasses the encryption normally used by the keyboard, and allows an attacker to type arbitrary
commands on the victim’s computer.

3. Forced pairing

Before a wireless keyboard or mouse leaves the factory, it is paired with a dongle. This means
that it knows the wireless address of the dongle, and in the case of a keyboard, the secret
encryption key.

Some vendors include the ability to pair new devices with a dongle, or pair an existing keyboard
or mouse with a new dongle. If a dongle is lost, for example, this means that the user only
needs to purchase a new dongle, instead of an entirely new set.

To prevent unauthorized devices from pairing with a dongle, the dongle will only accept new
devices when it has been placed into a special “pairing mode” by the user, which lasts for 30-60
seconds.

It is possible to bypass this pairing mode on some dongles and pair a new device without any
user interaction. In the case where a victim only has a mouse, but is using a dongle vulnerable
to keystroke injection by spoofing a keyboard, an attacker can pair a fake keyboard with the
dongle, and use it to type arbitrary commands on the victim’s computer.

Anatomy of an Attack

Carrying out a MouseJack attack does not require specialized or expensive equipment, and can
be done with a $15 USB dongle.

First, the attacker identifies a target wireless mouse or keyboard by listening for RF packets
transmitted when a user is moving/clicking the mouse or typing on the keyboard.

o ==
(tn)
4 X

1. Victim moves their 2. Victim’s mouse 3. Attacker’s USB dongle
mouse transmits unencrypted overhears packets sent by the
RF packets victim’s mouse

Attacker Identifying a Victim’s Mouse or Keyboard

If necessary, the attacker now force-pairs a fake keyboard with the victim’s dongle.
. Palrmn New Device

OF C> G C> ((m))'

1. Attacker generates a 2. Attacker’s USB dongle 3. Victim’s USB dongle receives
forced pairing request transmits a pairing the pairing request and pairs a
sequence request fake keyhoard

Attacker Force-Pairing a Fake Keyboard with the Victim’s Dongle

Finally, the attacker transmits keypress packets to type a series of commands into the victim’s
computer. This can include downloading a virus or rootkit, transferring files off of the victim’s
computer, or anything else the attacker could do if they were physically typing on the computer’s
keyboard.

Typing Malicious Keystrolfes

1. Attacker generates an 2. Attacker’s USB dongle 3. Victim’s USB dongle receives
unencrypted keystroke transmits an unencrypted and types the unencrypted
sequence keystroke sequence malicious keystrokes

Attacker Injecting Keystrokes into the Victim’s Dongle
Mitigation

There are two basic types of nRF24L chips used by keyboards, mice, and dongles:
one-time-programmable, and flash memory. One-time-programmable devices cannot be
updated once they leave the factory, but flash memory devices can.

For non-updateable devices, which represent the majority of those tested, there is no
mechanism to secure a vulnerable device short of unplugging the USB dongle from the
computer.

For devices with updated firmware available from the manufacturer, it is recommended to install
the update before continuing to use the affected mouse or keyboard.

References

1. Goodspeed, Travis. (February 7, 2011). Promiscuity is the nRF24L01+'s Duty. Retrieved
from http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24101s-duty.html

2. Newlin, Marc. (October 24, 2015). Hacking Wireless Mice with an NES Controller.
Presented at ToorCon 17, San Diego, CA.

3. Bitcraze AB. (2016). Crazyflie 2.0. Retrieved from https://www.bitcraze.io/crazyflie-2/

4. Bitcraze AB. (2016). Crazyradio PA. Retrieved from
https://www.bitcraze.io/crazyradio-pa/

More Information

Please refer to: https://www.mousejack.com/

Document History

Version | Date Comment

1.0 Feb 12,2016 | Original version.

1.1 Feb 22, 2016 | Edits & ‘More Information’.

https://www.mousejack.com/

